弾性支持された不均一な曲率を持つ 積層偏平シェルの振動解析法

成田 大祐

Vibration Analysis of Elastically Supported Laminated Shallow Shells with Non-uniform Curvature

Daisuke Narita

1. 緒 言

様々な曲率を持つシェル構造は自動車を始め, 色々な工業製品で見られる.特に自動車のボディに おいては,従来スチールやアルミニウム合金製が一 般的であったが,最近は合成樹脂を使用したパネル も多くみられる.それらの中でも CFRP(炭素繊維 強化プラスチック)は,その優れた比強度や比剛性 のため,自動車への利用が増えている⁽¹⁾.

一方, 複合材の振動に関する研究は以前より盛んに 行われており, 特にボディパネルによく見られる不 均一な曲率を持つ偏平シェルに関しても解析され ている⁽²⁾⁽³⁾.しかしながら, それらのパネルの支持 方式は, 一般的な自由, 単純, 固定の3種の支持方 式をベースにしたものであった.ところが, 実際の パネルはこれらの支持方式だけでは, 表現は不可能 である.成田らは, 図1のような4辺に沿って垂直 バネと回転バネを使用した弾性支持された積層平 板において, 振動の最適化に関する研究を行ってい る⁽⁴⁾.

ここでは、積層平板ではなく、弾性支持された不 均一な曲率を持つ積層偏平シェルに拡張する.そし て、自動車のボンネットを想定し不均一な曲率を持 つ CFRP 製偏平シェルにおいて、実際の支持方式 に近似していると思われる弾性支持状態を仮定し て、振動解析を行う.

2. 解析方法

図 2 のような上面から見て *a×b* の寸法となる長 方形状シェルを考える.これは, *xy* 平面からのシ ェル中央面の高さ(シェル高さ)を *ø*とすると, *x*, *y* の多項式(1)で近似できる.

図2 不均一な曲率を持つ偏平シェルモデル

ここで *a*, *c*₁₀, ...は未定係数であり,形状の主要点 を選んで内挿を行い求める.本研究では,解析の手 順を具体的に説明するための不均一な曲率形状の 例として,先に示した自動車のボンネットをイメー ジした形状を仮定する.

$$\phi(-a/2, y) = \phi(a/2, y) = \phi(x, -b/2) = 0$$

$$\phi(0, b/2) = H$$
(2)

式(1)を式(2)に代入すると、この条件を満たす形 状を表す近似関数は式(3)となる.

$$\phi(x,y) = \frac{H}{2} \left[1 - \left(\frac{2x}{a}\right)^2 \right] \left[1 + \left(\frac{2y}{b}\right) \right]$$
(3)

式(3)を2階微分すると、形状の傾きが急変しない 仮定 $(\partial \phi / \partial x)^2 = (\partial \phi / \partial y)^2 = 0$ の下でx, y方向の曲率 は式(4)となる.

$$\frac{1}{R_x} = \frac{4H}{a^2} \left(1 + \frac{2y}{b} \right) , \quad \frac{1}{R_y} = 0 \quad , \quad \frac{1}{R_{xy}} = \frac{8Hx}{a^2b}$$
(4)

ここで扱うシェルはDonnell型のシェル理論に基 づくと仮定する. Donnell型のシェル理論では,シ ェル中央面の変位*u*, *v*, *w*とひずみ*ɛx*, *ɛy*, *yxy*の関係 は,式(5)となる.

$$\varepsilon_{x} = \frac{\partial u}{\partial x} + \frac{w}{R_{x}} \quad , \quad \varepsilon_{y} = \frac{\partial v}{\partial y} + \frac{w}{R_{y}}$$
$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{2w}{R_{xy}} \tag{5}$$

従来の一定曲率シェルの解析との相違は,式(5) の曲率半径 *Rx*, *Ry*, *Rxy*が定数ではなく,式(4)によ り与えられる位置の関数となる点である.リッツ法 を用いるため,シェル全体のエネルギを評価する必 要がある.シェル全体に蓄えられるひずみエネルギ は,式(6)となる.

$$V = V_s + V_{bs} + V_b + V_{bk} \tag{6}$$

ここで、 V_s は面内変形によるひずみエネルギ、 V_{bs} は面内と面外のカップリングによるひずみエ ネルギ、 V_b は面外変形によるひずみエネルギであり、 それぞれ、式(7)となる.

$$V_{s} = \frac{1}{2} \iint \{\varepsilon\}^{T} [A] \{\varepsilon\} dxdy$$
$$V_{bs} = \frac{1}{2} \iint \{\kappa\}^{T} [B] \{\varepsilon\} + \{\varepsilon\}^{T} [B] \{\kappa\} \) dxdy \tag{7}$$
$$V_{b} = \frac{1}{2} \iint \{\kappa\}^{T} [D] \{\kappa\} dxdy$$

ここで、{&, { **a**} はそれぞれひずみベクトル、曲率 ベクトル、[*A*], [*B*], [*D*]は積層複合材の面内、面内と 面外のカップリング、面外に関する剛性マトリクス である.シェル中央面から第**k**層外側までの距離を zkとすると, 式(8)となる.

$$A_{ij} = \sum_{k=1}^{n} \left(\overline{Q}_{ij}\right)_{k} \left(z_{k} - z_{k-1}\right)$$

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{n} \left(\overline{Q}_{ij}\right)_{k} \left(z_{k}^{2} - z_{k-1}^{2}\right)$$

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{n} \left(\overline{Q}_{ij}\right)_{k} \left(z_{k}^{3} - z_{k-1}^{3}\right)$$
(8)

ここで, \overline{Q}_{ij} (*i*, *j* =1,2,6)は各層において, 繊維方

向座標から Oxy座標に座標変換された縮約剛性係 数であり, k層の縦弾性係数 E_L , E_T , ポアソン比 v_{LT} , およびせん断弾性係数 G_{LT} (L 軸:繊維方向, T 軸:Lと直交方向)により定義される.

また,式(6)の V_{bk}は,シェルが弾性支持されていることから,面外変形によるひずみにより,垂直バネと回転バネに蓄えられるエネルギで,式(9)となる.

$$\begin{aligned} V_{bk} &= \frac{1}{2} \left\{ \int_{-b/2}^{b/2} k_1 w^2 \left(-\frac{a}{2}, y \right) dy + \int_{-a/2}^{a/2} k_2 w^2 \left(x, -\frac{b}{2} \right) dx \\ &+ \int_{-b/2}^{b/2} k_3 w^2 \left(\frac{a}{2}, y \right) dy + \int_{-a/2}^{a/2} k_4 w^2 \left(x, \frac{b}{2} \right) dx \right\} \\ &+ \frac{1}{2} \left[\int_{-b/2}^{b/2} k_{r1} \left\{ \frac{dw}{dx} \left(-\frac{a}{2}, y \right) \right\}^2 dy + \int_{-a/2}^{a/2} k_{r2} \left\{ \frac{dw}{dy} \left(x, -\frac{b}{2} \right) \right\}^2 dx \\ &+ \int_{-b/2}^{b/2} k_{r3} \left\{ \frac{dw}{dx} \left(\frac{a}{2}, y \right) \right\}^2 dy + \int_{-a/2}^{a/2} k_{r4} \left\{ \frac{dw}{dy} \left(x, \frac{b}{2} \right) \right\}^2 dx \right] \end{aligned}$$
(9)

ここで, *k*_i(*i*=1,2,3,4)は垂直バネのバネ定数, *k*_{ri} (*i*=1,2,3,4)は回転バネのバネ定数である.

また、シェル全体の運動エネルギは式(10)となる.

$$T = \frac{\rho h}{2} \int_{-b/2}^{b/2} \int_{-a/2}^{a/2} \left[\left(\frac{\partial u}{\partial t} \right)^2 + \left(\frac{\partial v}{\partial t} \right)^2 + \left(\frac{\partial w}{\partial t} \right)^2 \right] dx dy \quad (10)$$

ここで, *p*は単位体積あたりの質量, *h*は板厚である. 続いて, 変位 *u*を式(11)のように定義する.

$$u(\xi,\eta,t) = \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} P_{ij} X_i(\xi) Y_j(\eta) \sin\omega t$$
(11)

ここで、 P_{ij} は未定係数であり、 $\xi = 2x/a$ および η =2y/bは無次元化座標である. $X_i(\hat{g}, Y_j(\eta)$ は「境界 条件インデックス」を用いて、任意の境界上で幾何 学的な条件を満足する関数であり、式(12)のように 定義する.

$$X_{i}(\xi) = \xi^{i}(\xi+1)^{bu1}(\xi-1)^{bu3}$$

$$Y_{j}(\eta) = \eta^{j}(\eta+1)^{bu2}(\eta-1)^{bu4}$$
(12)

ここで, bul, bu2, bu3, bu4 は u に関する長方形シェ ル各辺での境界条件インデックスである. buに続く各数 字は長方形の各辺を意味しており,長方形左辺から反時 計周りに1から4の順に対応している.境界条件インデ ックスの値が1の場合に固定(Cと表記)を表し,0の場合 は自由(Fと表記)を表す.v,wに関しても式(11),(12)と同 様であるが,面外変位wに関しては0のとき自由,1の とき単純支持(Sと表記),2のとき固定を表す.

最大ひずみエネルギVおよび最大運動エネルギTの差 により得られる汎関数Fに対して、それぞれの未定係数に 関する極値を求めることで、式(13)のような不均一な曲率 を有する複合材シェルの振動数方程式が導出できる.

$$\begin{pmatrix} \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{12} & k_{22} & k_{23} \\ k_{13} & k_{23} & k_{33} \end{bmatrix} - \Omega^2 \begin{bmatrix} m_{11} & 0 & 0 \\ 0 & m_{22} & 0 \\ 0 & 0 & m_{33} \end{bmatrix} \begin{pmatrix} P_{ij} \\ Q_{kl} \\ R_{mn} \end{pmatrix} = 0 \quad (13)$$

ここで、 k_{ij} , m_{ij} (*i*, *j*=1,2,3)はそれぞれ剛性行列, 質量行 列の要素であり、 Q_{kl} , R_{mn} は式(11)と同様にv, wに関する 未定係数である.式(13)より、式(14)のような無次元化さ れた固有振動数である振動数パラメータ Ω が得られる.

$$\Omega = \omega a^2 \sqrt{\frac{\rho h}{D_0}} \tag{14}$$

計算例では、CFRP材の材料定数

(E_L =138GPa, E_T =8.96GPa, G_{LT} =7.1GPa, v_{LT} =0.30)を 用いた.

3. 弾性支持による振動数解析

自動車ボンネットを仮定した図2に示したような不均 ーな曲率を持つ偏平シェルについて、計算を行う.形状 パラメータは厚さ比(*h/a=*0.01),アスペクト比(*a/b=*1)の 一定値,変位の項数(*M*, *N*など)は全て10とした.高さ比 *H/a*は、0.0251とする.この値は、本モデルの最大高さ*H* が円筒形シェルの*a/R*_{*}=0.2の高さに一致するよう決めた. 積層条件は、対称な八層アングルプライ積層[(*θ*-*θ*₂]s(*θ* は図12の*x*軸と繊維方向の角度,Sは対称の意)とし、その 角度を45°とした. なお,以後45°を45と記し,角度(°)の 記号を略する.

図 3(a) に全周自由(F-F-F-F)から全周単純支持 (S-S-S-S)まで垂直バネのバネ定数を徐々に大きくしてい った場合, (b)にS-S-S-Sから全周固定(C-C-C-C)まで回転 バネのバネ定数を大きくしていった場合の下から順に 1 次から 5 次の振動数の変化を示す. この結果より, F-F-F-FからS-S-S-S,およびS-S-S-SからC-C-C-Cへ はほぼ連続的に変化していることが分かる. なお, F-F-F-FとS-S-S-S,およびC-C-C-Cに関しては,文献 (3)にて汎用 FEM である ANSYS にて,正しい値である ことが示されている. これらの結果より,本計算による 値がほぼ正しいことが分かる. なお,横軸はそれぞれの バネ定数を無次元化したものである.

図3 弾性支持された不均一な曲率を持つ 偏平シェル[(45/-45)2]の振動数

4. 自動車ボンネットの取付方式

自動車のボンネットの取り付け方式は大きく分けて, 図4のような一般的な前部が開くアリゲータタイプ,図5 のような旧車によく使用されていた後部が開くチルトタ イプ,そして図6のようなFRP 製のフェンダ 一体型ボ ンネットに多い特殊なタイプの3タイプに分ける事がで きる.しかしながら,現在はアリゲータタイプがほとん どであることから,今回もこのタイプを前提とする.

図4 アリゲータタイプ

図5 チルトタイプ

図6 特殊タイプ (Wikipedia より)

図7 ヒンジ

図8 ストライカ

図9 フードロック

図10 ゴムブッシュ

図11 ボンネット例 (http://www.mazda.co.jp/より)

図12 (続く)

$FE(k=10^3)$ -S-FE(k=10^3)-SE(k_r=10^3)

*Ω*₄=188.3

S-S-S-C

図12 弾性支持されたボンネットの振動数とモード形

アリゲータタイプの場合,リア部(フロントウィ ンドシールド側)は、図7のようなヒンジ,フロン ト部は図8のようなストライカと図9のようなフー ドロックからなっており,サイド部はフリーである が,ちょうどフロント部とサイド部を同時に押さえ るために,図10のようなゴムブッシュが取り付け られているものがほとんどである.

これらのボンネットの支持方式は前述した 3 種 の支持方式(自由,単純支持,固定)では表現でき ないことは明らかである.なぜなら,フロント部と サイド部はゴムブッシュが,下方向の動きを押さえ ているからである.せいぜいリア部が単純支持と仮 定できる程度である.もしゴムブッシュが存在しな いとすれば,サイド部は自由,フロント部は単純支 持と仮定できなくもない.ここでは、ゴムブッシュ の存在により,サイド部は垂直バネによる弾性支持, フロント部は回転バネによる弾性支持と仮定する. 弾性支持を E と表すと今回の仮定は自動車を正面 から見たとすると, FE-SE-FE-S となる.

5. ボンネットを仮定した支持方式の振動解析

今回,最近良く見られる図 11 のようなフロント グリルが大きく,ボンネットのフロント部が湾曲し た形状を仮定し,あえて図 2 の y軸の正方向をフロ ント側としたボンネットを考える.積層条件に関し ては[(90/45/-45/0)2]という擬似等方性とし,他の条 件は図 3 と同様とする.

図 11 にバネ定数を変化させた場合の 1 次から 4 次までの振動数と振動モードを示す.なお,前記し たように図の上がボンネットのフロント側,下がリ ア側となる.比較のため, F-S-F-S($k=0, k_r=0$)と S-S-S-C($k=\infty, k_r=\infty$)も記載した.また,図上の× 印は最大変位点を,太線は変位ゼロの節線を表して いる.

まず,振動数に関しては支持するバネ定数が大き くなると、1次から4次まで、すべてが大きくなっ ていることが分かる.

モード形に関しては、支持するバネ定数が大きく なると、全体的に最大変位点がサイド部にあったも のが、徐々に中心方向に移動している.特に1次振 動では、バネ定数が10²以前において、x軸方向の モード形が表れ、それ以降では円形に変化し、この 傾向が顕著に表れている.2次振動では、y軸方向 に節線と2つの山(谷)が表れ、同様な傾向となって いる.3次振動では、バネ定数が10⁶のモード形の み、節線が特徴的なものになっているが、全体的に 同様な傾向となっている.4次振動では、バネ定数 が小さい場合にx軸方向に節線と4つの山(谷)が表 れ、それが徐々に2つの山(谷)に変化している.唯 ーバネ定数が10²の場合の4次のモード形が他と異 なっているが、図13に示すように5次のモード形 にちょうど 10 と 10³の中間的なモード形が表れて いる.

図 13 FE(k=10²)-S-FE(k=10²)-SE(k_r=10²)に おける 5 次の振動数とモード形

6. 結 言

今回は,弾性支持の例として自動車のボンネットを仮定したが、実際のボンネットは図 10 の通り サイド部は下方向の動きはゴムブッシュで制限されるが、上方向は実質的に自由であり、またフロント部はキャッチ部分の一点で支えることになるの と、サイド部と同様に下方向の動きはゴムブッシュ で制限されるが、上方向は自由である.リア部の単 純支持が最も近い仮定と考えられるが、実際は左右 2 点で支持されており、その支持部も奥まった位置 となっている.今後は、より現実の支持方式に近い 振動解析法、及び座屈解析法に関して研究を行いた いと考えている.

参考文献

- 成田大祐: CFRP 製自動車ボンネットの最適設 計について、北海道自動車短期大学研究紀要、 第 39 号, pp.10-16 (2014)
- 成田大祐,成田吉弘: 不均一な曲率を持つ積 層偏平シェルの振動解析法,日本機械学会論文 集(C編), Vol.72, No.724, pp.3743-3750 (2006)
- 成田大祐: 種々の曲面を持つ積層偏平シェルの解析と最適設計に関する研究, 北海道大学博 士学位論文報告番号 8582, Vol.32, p.200 (2008)
- Y. Narita,S. Honda : Vibration Optimization of Laminated Composite Rectangular Plates with General Elastic Edge Restraints,Proceeding of the US-Japan conference of Composite Materals ASTM-D30 Meeting ,pp.284-295 (2012)